適用范圍: 公園、工廠、超市、小區(qū)廣場、會議中心、體育場館、學(xué)校、醫(yī)院、住宅區(qū)、商業(yè)街、大型農(nóng)貿(mào)市場等公眾活動和聚集場所的重要部位,酒店(賓館)、餐飲、娛樂場所、辦公樓的大堂出入口、電梯和其他主要通道等室內(nèi)外范圍的監(jiān)控錄像用途。
人臉識別率高
本產(chǎn)品采用國內(nèi)先進的人臉識別算法,可以快速準確的識別出當(dāng)前人員。
技術(shù)原理:
人臉識別內(nèi)容
人臉識別技術(shù)包含三個部分:
(1)人臉檢測
面貌檢測是指在動態(tài)的場景與復(fù)雜的背景中判斷是否存在面像,并分離出這種面像。一般有下列幾種方法:
①參考模板法
首先設(shè)計一個或數(shù)個標準人臉的模板,然后計算測試采集的樣品與標準模板之間的匹配程度,并通過閾值來判斷是否存在人臉;
②人臉規(guī)則法
由于人臉具有一定的結(jié)構(gòu)分布特征,所謂人臉規(guī)則的方法即提取這些特征生成相應(yīng)的規(guī)則以判斷測試樣品是否包含人臉;
③樣品學(xué)習(xí)法
這種方法即采用模式識別中人工神經(jīng)網(wǎng)絡(luò)的方法,即通過對面像樣品集和非面像樣品集的學(xué)習(xí)產(chǎn)生分類器;
④膚色模型法
這種方法是依據(jù)面貌膚色在色彩空間中分布相對集中的規(guī)律來進行檢測。
⑤特征子臉法
這種方法是將所有面像視為一個面像子空間,并基于檢測樣品與其在子孔間的投影之間的距離判斷是否存在面像。
值得提出的是,上述5種方法在實際檢測系統(tǒng)中也可綜合采用。
(2)人臉跟蹤
面貌跟蹤是指對被檢測到的面貌進行動態(tài)目標跟蹤。具體采用基于模型的方法或基于運動與模型相結(jié)合的方法。此外,利用膚色模型跟蹤也不失為一種簡單而有效的手段。
(3)人臉比對
面貌比對是對被檢測到的面貌像進行身份確認或在面像庫中進行目標搜索。這實際上就是說,將采樣到的面像與庫存的面像依次進行比對,并找出佳的匹配對象。所以,面像的描述決定了面像識別的具體方法與性能。目前主要采用特征向量與面紋模板兩種描述方法:
①特征向量法
該方法是先確定眼虹膜、鼻翼、嘴角等面像五官輪廓的大小、位置、距離等屬性,然后再計算出它們的幾何特征量,而這些特征量形成一描述該面像的特征向量。
②面紋模板法
該方法是在庫中存儲若干標準面像模板或面像器官模板,在進行比對時,將采樣面像所有象素與庫中所有模板采用歸一化相關(guān)量度量進行匹配。此外,還有采用模式識別的自相關(guān)網(wǎng)絡(luò)或特征與模板相結(jié)合的方法。
人臉識別技術(shù)的核心實際為“局部人體特征分析”和“圖形/神經(jīng)識別算法。”這種算法是利用人體面部各器官及特征部位的方法。如對應(yīng)幾何關(guān)系多數(shù)據(jù)形成識別參數(shù)與數(shù)據(jù)庫中所有的原始參數(shù)進行比較、判斷與確認。一般要求判斷時間低于1秒。
先進的特征提取算法
采用獨特的自適應(yīng)的分層特征學(xué)習(xí)算法,再現(xiàn)系統(tǒng)能針對任意的識別任務(wù)通過學(xué)習(xí)自動生成優(yōu)的特征提取,從而不斷增加新的檢索特征,具有其他系統(tǒng)無法比擬的自學(xué)習(xí)性和可擴展性。
-/gbaciei/-
http://m.bjswx.com